OSQP

基本信息

  • 官网
  • 二次规划库,同OOQP

使用方式

  • 问题描述

  • source-codes-demo

  • Python代码

      import osqp
      import numpy as np
      from scipy import sparse
    
      # Define problem data
      P = sparse.csc_matrix([[4, 1], [1, 2]])
      q = np.array([1, 1])
      A = sparse.csc_matrix([[1, 1], [1, 0], [0, 1]])
      l = np.array([1, 0, 0])
      u = np.array([1, 0.7, 0.7])
    
      # Create an OSQP object
      prob = osqp.OSQP()
    
      # Setup workspace and change alpha parameter
      prob.setup(P, q, A, l, u, alpha=1.0)
    
      # Solve problem
      res = prob.solve()
    
  • 简单易懂

  • C/C++代码

      #include "osqp.h"
    
      int main(int argc, char **argv) {
        // Load problem data
        c_float P_x[3] = {4.0, 1.0, 2.0, };//目标矩阵的非零值
        c_int P_nnz = 3;                   //目标矩阵的非零值的个数
        c_int P_i[3] = {0, 0, 1, };        //目标矩阵的非零值所在的row,与P_x一一对应
    
        //P_p[i]=n,P_p[i+1]=m, 表示
        //for k from n to m:
        //  将P_x[k]填在第i列,P_i[k]行
        c_int P_p[3] = {0, 1, 3, };        //每一列的第一个非零元素所对应的P_x数组的indice,最后一个值肯定是P_nnz
    
        c_float q[2] = {1.0, 1.0, };
        c_float A_x[4] = {1.0, 1.0, 1.0, 1.0, };
        c_int A_nnz = 4;
        c_int A_i[4] = {0, 1, 0, 2, };
        c_int A_p[3] = {0, 2, 4, };
        c_float l[3] = {1.0, 0.0, 0.0, };
        c_float u[3] = {1.0, 0.7, 0.7, };
        c_int n = 2;
        c_int m = 3;
    
        // Exitflag
        c_int exitflag = 0;
    
        // Workspace structures
        OSQPWorkspace *work;
        OSQPSettings  *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings));
        OSQPData      *data     = (OSQPData *)c_malloc(sizeof(OSQPData));
    
        // Populate data
        if (data) {
          data->n = n;
          data->m = m;
          data->P = csc_matrix(data->n, data->n, P_nnz, P_x, P_i, P_p);
          data->q = q;
          data->A = csc_matrix(data->m, data->n, A_nnz, A_x, A_i, A_p);
          data->l = l;
          data->u = u;
        }
    
        // Define solver settings as default
        if (settings) {
          osqp_set_default_settings(settings);
          settings->alpha = 1.0; // Change alpha parameter
        }
    
        // Setup workspace
        exitflag = osqp_setup(&work, data, settings);
    
        // Solve Problem
        osqp_solve(work);
    
        // Cleanup
        if (data) {
          if (data->A) c_free(data->A);
          if (data->P) c_free(data->P);
          c_free(data);
        }
        if (settings) c_free(settings);
    
        return exitflag;
      };
    

  • Apollo基于osqp的minimum jerk path optimization

      void PiecewiseJerkPathProblem::CalculateKernel(std::vector<c_float>* P_data,
                                                    std::vector<c_int>* P_indices,
                                                    std::vector<c_int>* P_indptr) {
        const int n = static_cast<int>(num_of_knots_);
        const int num_of_variables = 3 * n;
        const int num_of_nonzeros = num_of_variables + (n - 1);
        std::vector<std::vector<std::pair<c_int, c_float>>> columns(num_of_variables);
        int value_index = 0;
    
        // x(i)^2 * (w_x + w_x_ref)
        for (int i = 0; i < n - 1; ++i) {
          columns[i].emplace_back(
              i, (weight_x_ + weight_x_ref_) / (scale_factor_[0] * scale_factor_[0]));
          ++value_index;
        }
        // x(n-1)^2 * (w_x + w_x_ref + w_end_x)
        columns[n - 1].emplace_back(
            n - 1, (weight_x_ + weight_x_ref_ + weight_end_state_[0]) /
                      (scale_factor_[0] * scale_factor_[0]));
        ++value_index;
    
        // x(i)'^2 * w_dx
        for (int i = 0; i < n - 1; ++i) {
          columns[n + i].emplace_back(
              n + i, weight_dx_ / (scale_factor_[1] * scale_factor_[1]));
          ++value_index;
        }
        // x(n-1)'^2 * (w_dx + w_end_dx)
        columns[2 * n - 1].emplace_back(2 * n - 1,
                                        (weight_dx_ + weight_end_state_[1]) /
                                            (scale_factor_[1] * scale_factor_[1]));
        ++value_index;
    
        auto delta_s_square = delta_s_ * delta_s_;
        // x(i)''^2 * (w_ddx + 2 * w_dddx / delta_s^2)
        columns[2 * n].emplace_back(2 * n,
                                    (weight_ddx_ + weight_dddx_ / delta_s_square) /
                                        (scale_factor_[2] * scale_factor_[2]));
        ++value_index;
        for (int i = 1; i < n - 1; ++i) {
          columns[2 * n + i].emplace_back(
              2 * n + i, (weight_ddx_ + 2.0 * weight_dddx_ / delta_s_square) /
                            (scale_factor_[2] * scale_factor_[2]));
          ++value_index;
        }
        columns[3 * n - 1].emplace_back(
            3 * n - 1,
            (weight_ddx_ + weight_dddx_ / delta_s_square + weight_end_state_[2]) /
                (scale_factor_[2] * scale_factor_[2]));
        ++value_index;
    
        // -2 * w_dddx / delta_s^2 * x(i)'' * x(i + 1)''
        for (int i = 0; i < n - 1; ++i) {
          columns[2 * n + i].emplace_back(2 * n + i + 1,
                                          (-2.0 * weight_dddx_ / delta_s_square) /
                                              (scale_factor_[2] * scale_factor_[2]));
          ++value_index;
        }
    
        CHECK_EQ(value_index, num_of_nonzeros);
    
        int ind_p = 0;
        for (int i = 0; i < num_of_variables; ++i) {
          P_indptr->push_back(ind_p);
          for (const auto& row_data_pair : columns[i]) {
            P_data->push_back(row_data_pair.second * 2.0);
            P_indices->push_back(row_data_pair.first);
            ++ind_p;
          }
        }
        P_indptr->push_back(ind_p);
      }
    

Search

    欢迎添加我的微信

    闷骚的程序员

    Table of Contents