#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>
#include <iostream>
#include <chrono>
class ThreadPool {
public:
ThreadPool(size_t);
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
~ThreadPool();
private:
// need to keep track of threads so we can join them
std::vector< std::thread > workers;
// the task queue
std::queue< std::function<void()> > tasks;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
inline ThreadPool::ThreadPool(size_t threads) : stop(false)
{
for(size_t i = 0; i < threads; ++i) {
workers.emplace_back(
[this]
{
for(;;)
{
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(lock,
[this]{ return this->stop || !this->tasks.empty(); });
if(this->stop && this->tasks.empty())
return;
task = std::move(this->tasks.front());
this->tasks.pop();
}
task();
}
}
);
}
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for(std::thread &worker: workers)
worker.join();
}
// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>
{
using return_type = typename std::result_of<F(Args...)>::type;
auto task = std::make_shared< std::packaged_task<return_type()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
// don't allow enqueueing after stopping the pool
if(stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
tasks.emplace([task](){ (*task)(); });
}
condition.notify_one();
return res;
}
void DataProcessing(std::string& data, const std::string& operation) {
data += operation;
std::this_thread::sleep_for(std::chrono::seconds(1));
}
int main(int argc, char** argv) {
ThreadPool thread_pool(4);
std::string data = "raw";
auto time1 = std::chrono::system_clock::now();
std::vector<std::future<void>> futures;
for (int i = 0; i < 4; ++i) {
futures.emplace_back(thread_pool.enqueue(std::bind(DataProcessing, std::ref(data), std::to_string(i))));
}
for (auto& future : futures) {
try {
if (future.valid()) {
future.get();
} else {
std::cerr << "Future is invalid";
}
} catch (const std::future_error& ex) {
std::cerr << "Caught a future error with code[" << ex.code() << "] message[" << ex.what() << "].";
throw ex;
}
}
auto time2 = std::chrono::system_clock::now();
std::chrono::duration<double> diff = time2 - time1;
std::cout << data << std::endl;
std::cout << "Time Diff = " << diff.count() * 1000<< " msec." << std::endl;
return 0;
}