looyifan / OSQP

Created Wed, 02 Apr 2025 11:08:42 +0800 Modified Thu, 03 Apr 2025 16:56:27 +0800
766 Words

基本信息

  • 官网
  • 二次规划库,同OOQP

使用方式

  • 问题描述

  • source-codes-demo

  • Python代码

    import osqp
    import numpy as np
    from scipy import sparse

    # Define problem data
    P = sparse.csc_matrix([[4, 1], [1, 2]])
    q = np.array([1, 1])
    A = sparse.csc_matrix([[1, 1], [1, 0], [0, 1]])
    l = np.array([1, 0, 0])
    u = np.array([1, 0.7, 0.7])

    # Create an OSQP object
    prob = osqp.OSQP()

    # Setup workspace and change alpha parameter
    prob.setup(P, q, A, l, u, alpha=1.0)

    # Solve problem
    res = prob.solve()
  • 简单易懂

  • C/C++代码

    #include "osqp.h"

    int main(int argc, char **argv) {
      // Load problem data
      c_float P_x[3] = {4.0, 1.0, 2.0, };//目标矩阵的非零值
      c_int P_nnz = 3;                   //目标矩阵的非零值的个数
      c_int P_i[3] = {0, 0, 1, };        //目标矩阵的非零值所在的row,与P_x一一对应

      //P_p[i]=n,P_p[i+1]=m, 表示
      //for k from n to m:
      //  将P_x[k]填在第i列,P_i[k]行
      c_int P_p[3] = {0, 1, 3, };        //每一列的第一个非零元素所对应的P_x数组的indice,最后一个值肯定是P_nnz

      c_float q[2] = {1.0, 1.0, };
      c_float A_x[4] = {1.0, 1.0, 1.0, 1.0, };
      c_int A_nnz = 4;
      c_int A_i[4] = {0, 1, 0, 2, };
      c_int A_p[3] = {0, 2, 4, };
      c_float l[3] = {1.0, 0.0, 0.0, };
      c_float u[3] = {1.0, 0.7, 0.7, };
      c_int n = 2;
      c_int m = 3;

      // Exitflag
      c_int exitflag = 0;

      // Workspace structures
      OSQPWorkspace *work;
      OSQPSettings  *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings));
      OSQPData      *data     = (OSQPData *)c_malloc(sizeof(OSQPData));

      // Populate data
      if (data) {
        data->n = n;
        data->m = m;
        data->P = csc_matrix(data->n, data->n, P_nnz, P_x, P_i, P_p);
        data->q = q;
        data->A = csc_matrix(data->m, data->n, A_nnz, A_x, A_i, A_p);
        data->l = l;
        data->u = u;
      }

      // Define solver settings as default
      if (settings) {
        osqp_set_default_settings(settings);
        settings->alpha = 1.0; // Change alpha parameter
      }

      // Setup workspace
      exitflag = osqp_setup(&work, data, settings);

      // Solve Problem
      osqp_solve(work);

      // Cleanup
      if (data) {
        if (data->A) c_free(data->A);
        if (data->P) c_free(data->P);
        c_free(data);
      }
      if (settings) c_free(settings);

      return exitflag;
    };

  • Apollo基于osqp的minimum jerk path optimization

    void PiecewiseJerkPathProblem::CalculateKernel(std::vector<c_float>* P_data,
                                                  std::vector<c_int>* P_indices,
                                                  std::vector<c_int>* P_indptr) {
      const int n = static_cast<int>(num_of_knots_);
      const int num_of_variables = 3 * n;
      const int num_of_nonzeros = num_of_variables + (n - 1);
      std::vector<std::vector<std::pair<c_int, c_float>>> columns(num_of_variables);
      int value_index = 0;

      // x(i)^2 * (w_x + w_x_ref)
      for (int i = 0; i < n - 1; ++i) {
        columns[i].emplace_back(
            i, (weight_x_ + weight_x_ref_) / (scale_factor_[0] * scale_factor_[0]));
        ++value_index;
      }
      // x(n-1)^2 * (w_x + w_x_ref + w_end_x)
      columns[n - 1].emplace_back(
          n - 1, (weight_x_ + weight_x_ref_ + weight_end_state_[0]) /
                    (scale_factor_[0] * scale_factor_[0]));
      ++value_index;

      // x(i)'^2 * w_dx
      for (int i = 0; i < n - 1; ++i) {
        columns[n + i].emplace_back(
            n + i, weight_dx_ / (scale_factor_[1] * scale_factor_[1]));
        ++value_index;
      }
      // x(n-1)'^2 * (w_dx + w_end_dx)
      columns[2 * n - 1].emplace_back(2 * n - 1,
                                      (weight_dx_ + weight_end_state_[1]) /
                                          (scale_factor_[1] * scale_factor_[1]));
      ++value_index;

      auto delta_s_square = delta_s_ * delta_s_;
      // x(i)''^2 * (w_ddx + 2 * w_dddx / delta_s^2)
      columns[2 * n].emplace_back(2 * n,
                                  (weight_ddx_ + weight_dddx_ / delta_s_square) /
                                      (scale_factor_[2] * scale_factor_[2]));
      ++value_index;
      for (int i = 1; i < n - 1; ++i) {
        columns[2 * n + i].emplace_back(
            2 * n + i, (weight_ddx_ + 2.0 * weight_dddx_ / delta_s_square) /
                          (scale_factor_[2] * scale_factor_[2]));
        ++value_index;
      }
      columns[3 * n - 1].emplace_back(
          3 * n - 1,
          (weight_ddx_ + weight_dddx_ / delta_s_square + weight_end_state_[2]) /
              (scale_factor_[2] * scale_factor_[2]));
      ++value_index;

      // -2 * w_dddx / delta_s^2 * x(i)'' * x(i + 1)''
      for (int i = 0; i < n - 1; ++i) {
        columns[2 * n + i].emplace_back(2 * n + i + 1,
                                        (-2.0 * weight_dddx_ / delta_s_square) /
                                            (scale_factor_[2] * scale_factor_[2]));
        ++value_index;
      }

      CHECK_EQ(value_index, num_of_nonzeros);

      int ind_p = 0;
      for (int i = 0; i < num_of_variables; ++i) {
        P_indptr->push_back(ind_p);
        for (const auto& row_data_pair : columns[i]) {
          P_data->push_back(row_data_pair.second * 2.0);
          P_indices->push_back(row_data_pair.first);
          ++ind_p;
        }
      }
      P_indptr->push_back(ind_p);
    }